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Abstract. A duality theorem is proved which establishes the property of self-duality in the 
thermodynamic limit to be a natural property of a large class of pure three-body king 
models. 

A new form of low temperature expansion is obtained for triplet king models in zero 
field, which are closed polygon expansions and are highly lattice dependent. These closed 
polygon expansions readily establish an equivalence between pure triplet models and 
corresponding vertex models, and it is seen that a number of ‘ice rules’ are equivalent to 
triplet models at the dual point. 

1. Introduction 

Ising model systems which contain three-spin interactions have recently been consi- 
dered by several authors, Some of the current interest in such models has arisen from 
the fact that their critical point behaviour can be quite different from the nearest- 
neighbour king model. At the present time there are two exact solutions known for 
triplet models (in zero field) on planar lattices which illustrate this difference in critical 
behaviour. Baxter and Wu (1973,1974) have obtained the exact evaluation of the zero 
field partition function for the isotropic triplet model on the plane triangular lattice. 
Also for this model Baxter (1974,1975) has obtained the correlation length and triplet 
order parameter for the nearest-neighbour model, while Baxter et a1 (1975) have 
conjectured the exact form of the zero field magnetization function. Sacco and Wu 
(1975) have also considered this triplet model as a special case of the 32-vertex model 
on the triangular lattice, the general solution of which is not known at the present time. 
Hintermann and Merlini (1972) have shown that the solution of a four-parameter 
anisotropic triplet model on the Union Jack lattice is equivalent to the eight-vertex 
model solution of Baxter (19721, thus this model possesses a variable specific heat 
exponent which is a function of the interaction parameters. 

In  the thermodynamic limit both of the above pure triplet models possess the 
property of self duality (Wood and Griffiths 1972, Merlini and Gruber 1972). Originally 
it was thought that the property of self duality in zero field was a highly restrictive 
condition (Merlini and Gruber 1972); this is in fact not the case, and in this paper we 
prove a duality theorem which establishes self-duality to be a natural property of a large 
class of both isotropic and anisotropic pure triplet models on planar lattices. We also 
show that this class of triplet models is readily transformed into equivalent vertex model 
problems on a variety of planar lattices. For triplet models on the Union Jack and 
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triangular lattices Wannier’s argument (Wannier 1945) for predicting the critical point 
is known to hold, and in each case the vertex model form of these triplet models 
becomes equivalent to the corresponding ‘ice rules’ at the critical point of the original 
triplet model. Thus in the numerical form of the weak graph series expansion for the 
residual entropy of square ice (Nagle 1968) the partition function is evaluated at a 
singularity of the corresponding free energy function. 

2. The self-duality of planar triplet models 

Consider a lattice L of classical spins U, ( = *l) where r labels the lattice sites. Let L be 
a plane triangulation in which every line of L connecting nearest-neighbour points r and 
r’ is shared by two triangles in the form 

and in which there are no overlapping triangles?. A pure triplet Ising model can be 
defined on L with a Hamiltonian in the form 

where the summation is over all triangles in L. The partition function of the model is 
given by 

and can be written in the form 

Z =  (sinh 2K)” n 4 ( e K * + u u ’ d ’  e-K*) (4) 
{U,} A 

where T is the total number of triangles in L and K* is the usual dual temperature 
defined by 

sinh 2K sinh 2K* = 1. ( 5 )  
Consider the triangle formed by the spins U, Q’ and U’‘ shown in figure 1; we restrict 

the number of triangles incident at each vertex of L to be even, thus these incident 
triangles form rings of 4,q’ and q” triangles around the points U, Q’ and U” respectively. 
Following Wegner’s ideas for a general transformation of variables in lattice statistics 
(Wegner 1973) we introduce the set of variables {Ai} where a variable A is defined on 
each triangle of L by A = UU’U’’, and consider transforming the summation in (3) to a 

i In  graph terminology the lattice L is a maximal plane graph. 
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Figure 1. A triangle of spins U, U’, and U” on the lattice L. Each vertex is ringed by an even 
number of triangles, these numbers are q, q’, and q” for the vertices of this triangle. 

summation over the set {A,}. The configuration sets {err} and { A j }  must be coupled such 
that only those configurations {A,} which correspond to spin configurations {vr} are 
allowed in (3). 

Consider a subgraph g of L made up entirely of triangles, and in which the number 
of triangles incident at any vertex of g is even. These subgraphs are precisely those 
graphs which contribute to the hyperbolic tangent expansion of 2 (see Wood and 
Griffiths 1973). On any such subgraph the condition 

must hold where the product runs over all the triangles of g. Now we observe that for 
the condition (6) to hold on a plane triangulation it is sufficient that the products of the q, 
q‘ and q” A-variables of triangles incident to the vertices cr, cr’ and cr” (see figure 1) 
should be equal to unity. Thus we can write 

where a variable 4, is defined at each vertex r of L, and is unity if the above condition 
holds at r and is zero otherwise. Thus the general constraints 4,* envisaged by Wegner 
(1973) in this instance are such that the dual points r* = r, and hence L* = L. We can 
define functions g(A,, p,) where p, = *l, and is an additional variable placed at r of L,  
and A, is one of the triangles incident to the vertex r ;  the defining relations are 

g(A,, 1) = 2-l’‘, g(A,, -1) =A,2-”‘, (8) 
where q is the number of triangles incident at r. With this definition the constraints 4, 
can be written as 

and 
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where wA(p,  p f ,  p") is defined on each triangle of L, and is given by 

Thus 

For a triangulation defined above, on ignoring boundary effects (these are of order 
1/N) and using Euler's relation we deduce that T =  2N, hence combining (4) and (14) 
we arrive at the general duality relation 

f ( K )  = In sinh 2K+f(K*) (15) 

where f is the free energy per site of any triplet model on a plane triangulation defined 
above?. Thus if Wannier's argument (Wannier 1945) holds to locate the critical point 
(this familiar argument may however fail in cases where the sublattices of the original 
lattice L are not equal), the critical point of the large class of isotropic triplet models 
would be the same, namely 

Examples of plane triangulations are shown in figure 2. 
The above development is readily generalized to pure triplet models with aniso- 

tropic triplet fields with K" and K in (4) and (14) replaced by Kz and K, respectively 
where K, is the interaction constant of a triangle or a set of triangles in L. Thus in the 
case of the Union Jack triangulation Hintermann and Merlini showed that for four 
interaction constants 

which can also be derived from this generalization of (15). In (17) T is a permutation 
belonging to the dihedral group of order 4. Generalized duality relations of this type 
can be derived for a large class of triplet models using the development leading to 
(14). Thus the anisotropic version of the triangular lattice triplet model (see § 3) which 
has six interaction constants K, ,  . . . , K6 on triangles surrounding the points of a 
triangular sublattice, satisfies a corresponding duality relation to (17) with T now the 
dihedral group of order 6. 

t This result can also be established in terms of the group theoretical treatment of duality relations as 
developed by Merlini and Gruber (1972). In their notation a choice of the identity map dB = B* = B (for all B 
in B) for the bijection d: E!+ %* implies K r* and the model is self dual by definition of self duality. 
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Figure 2. Some examples of plane triangulations: ( a )  the regular triangular lattice; ( b )  the 
Union Jack lattice; ( c )  a triangulation of the bathroom tile lattice; and ( d )  a triangulation of 
the diced lattice. Each lattice is divided into sublattices L 1  and L23 denoted by the full and 
open circles respectively. The lattice L1  is the dual lattice to L Z 3  and is shown by the broken 
lines, the dual lattices shown in (a ) ,  (b ) ,  ( c ) ,  and ( d )  respectively are the triangular lattice, 
the square lattice, the Union Jack lattice, and the KagomC lattice. 

3. Vertex model equivalences of planar triplet models 

Triplet models on a number of plane triangulations have interesting equivalences with 
vertex model problems, thus Hintermann and Merlini (1972) introduced the Union 
Jack triangulation via its correspondence with the eight-vertex model of Baxter (1972). 
We take the same definition of a plane triangulation as given in Q 2, and consider a 
triangulation in the form 

2 Q 3  \ 

1 

where the sublattice L1 (full circles) is the dual lattice of the sublattice LZ3 (open circles). 
Examples of (18) where the dual lattice is the triangular, KagomC and Union Jack lattice 
are shown in figure 2 by the broken lines. 

Consider again an isotropic triplet model Hamiltonian defined on such a triangula- 
tion, then following Baxter and Wu (1974) we can write this Hamiltonian in the form 

H = C ~ ~ V ~ ~ ( A , + A ~ + .  . .+A,) 

where the summation is over the nearest-neighbour bonds of the lattice Lz3, ana 



234 D W Wood and N E  Pegg 

A =uLpL3, with uL, being the spin variables on the sublattice L,. In (19) q is the 
number of triangles ringing the lattice point uLl, again we assume that q is even but not 
necessarily the same at each point of L1. Following Wegner (1973) the partition 
function can now be written in the form 

where Wegner’s constraints are 

and where the g-functions are again defined by (8)’ but now t* are the points of the L 1  
sublattice. Following the procedure of 0 2  (see also Baxter and Wu 1974) we can 
eliminate the A-variables in (20) (these are now products of pairs of spins) and the 
partition function can be expressed in the form 

where the product is over all nearest-neighbour pairs of points ( p L 1 ,  vL1) and (p;, ,  U;,) 
on the L1 lattice at which are incident q and q’ triangles respectively. The modification 
to (22) caused by anisotropic triplet fields where triangles sharing a common bond of 
L23 and incident at neighbouring points (gL1, pLJ, (ail, p:,) have interactions K and 
K’ respectively, is given by 

It is possible to derive a low temperature expansion of the forms (22) and (23) in 
terms of only the weak polygon subgraphs of the lattice L1.  As far as the authors are 
aware these are new forms of low temperature expansions in which the expansion 
variables turn out to be highly dependent upon lattice structure. The expansions are a 
class of weak graph expansions but seem to arise from a more complicated form of the 
partition function than envisaged by Nagle (1968) in a general treatment of weak graph 
expansions. For an isotropic triplet model we can write (22) in the form 

where c =cosh K, and s = sinh K. On expanding the product in (24) we can denote each 
product pair pL1p;, by a line joining nearest -neighbour points of L 1 ,  and on summing 
over the variables {pL1} in the usual way only the weak polygon embeddings (these are 
subgraphs of L 1  where the degree of each vertex is even) will survive in the expansion; 
this is exactly the same phenomena as occurs in the hyperbolic tangent expansion of the 
zero field Ising model (Domb 1974). Thus each term in the expansion of (24) is now 
associated with a polygon subgraph g ( p )  of L1, and consists of a product of 2s factors 
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where s is the number of lines of L1. Thus we can write 

where the product is over all the edges of L1 and 

TI, = ( C - U l S ) ( C - c 7 , S )  (26) 

TI, = (c  +U1S)(C +U$) 

if i j  is an edge of the graph g(p), and 

(27) 

if ij is not an edge of g(  p ) .  Since every edge of L1 is represented by a product of two 
factors in (25) we can rearrange the expansion in the form of a vertex expansion and 
write 

N .  

where V(i) is the weight of the ith vertex of L1, and is given by 

In (29) q is the degree of the ith vertex and I, is the number of lines of the graph g(p)  
incident to the ith-vertex of L1 (q  and 1, are both even), thus 

@ ( I , )  =w(q-1, )=(c-s) '~(c+s)4- '~  + ( C + S ) 1 ~ ( C - s ) 4 - ' ~  (30) 

and we can write Z in the form 

where na is the number of vertices of degree a in g(p)  at vertices of degree q in L1 (q  
may vary over the points of Ll), with Nq being the number of points of L1 with degree q. 
We can now consider a few examples of (31). 

3.1. The Union Jack lattice 

For this lattice L1 is the simple quadratic lattice (see figure 2), thus setting q = 4 in (31) 
we obtain 

where [g(p)] is the number of embeddings of the closed polygons g ( p )  on L1 ,  and n 2  is 
the number of vertices of degree 2 in g(p).  The expansion parameter is 

with v = tanh K, and 

w (0) = e4K + e-4K (34) 
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Clearly the expansion (32) is related to the generating function used to obtain the 
residual entropy of square ice (Nagle 1968, 1974). It is known that the critical point of 
this triplet model is given by (16), which yields w ( 2 ) / w ( O )  = 5 at the critical point, thus at 
the critical point the partition function becomes identical with Nagle's entropy expan- 
sion 

(35) N 3 N  z = 4  (5)  c [g(p)l(i)"z. 
g(P) 

Hence the point x = 4 of Nagle's expansion (Nagle 1974) is a singular point of the free 
energy function. 

3.2. Triplet model on the triangular lattice 

A correspondence between the ice rule on the triangular lattice and the pure triplet 
model on this lattice at its critical point (again given by (16)) was noted by Baxter and 
Wu (1974) in their equivalent colouring problem for this triplet model. This equiva- 
lence can also be seen from the expansion (3 1) where on puttingq = 6 at all sites of L1 

where 

U (0) = e6K + e-6K, 

w(2)/0(0)=u/(u2-u+1) (U = e-4K ). 

z, = ( 1 0 J 2 y  1 [g(p)](;)"'+"' 

and 

Thus at the critical point (16) 

P ( P )  

(37) 

(39) 

which apart from a numerical factor is Nagle's weak graph expansion for triangular ice 
(Nagle 1968). Although the ice rule restricts the number of vertex weights t:, be 6 and 
20 respectively for the square and triangular lattices, both (35) and (39) can be derived 
using the weak graph transformation (Wu 1969) on the corresponding 8- and 32-vertex 
models. 

3.3 The diced lattice 

A triplet model on the diced lattice (see figure 2) has a weak graph expansion identical 
to (32) on the KagomC lattice formed by the L1 sites. It can readily be shown that the 
residual entropy series for KagomC ice is also given by the expansion (35) (apart from a 
numerical factor) with g ( p )  defined over the sites of the KagomC lattice. The residual 
entropy of KagomC ice is as yet unsolved (Lin 1975a, b), however another ice rule 
equivalence will exist at the dual point (16), although this may turn out not to be a 
critical point. 

3.4. The bathroom tile lattice 

A triplet model can be defined over the triangulation of the bathroom tile lattice shown 
in figure 2. Here the L 1  sites form a Union Jack lattice with N4 = N8 = N. Thus the low 
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temperature closed polygon expansion (3 1) takes the form 

where w ( a ,  q )  is used to denote w(q - a )  of (30), thus the index n2 on the first 
parenthesis in (40) is the number of degree 2 vertices of g ( p )  at the q = 4 points of L1. 
The partition function (40) corresponds to a special case of the vertex model problem on 
the Union Jack lattice which has the usual arrow reversal symmetry. Thus at 4 = 8 sites 
128 vertex configurations are allowed while at the 4 = 4 sites the usual 8-vertex 
configurations are allowed. 

The above vertex model equivalence is a special case of a general equivalence 
between isotropic pure triplet models on plane triangulations and vertex models on the 
L1 lattice. The vertex models all possess arrow reversal symmetry where only even 
numbers of arrows point towards any vertex of L1. In bond language for the vertex 
configurations (see Lieb and Wu 1972) this means that a vertex configuration of L1 has 
zero or an even number of bonds incident to the vertices of L1, thus a summation over 
vertex configurations is precisely the summations over the closed polygons in (31) on 
L1.  The vertex weights of this equivalent vertex model are defined by (30) which can be 
written 

U ( / , )  = w ( 4  - 1,) = 2 cosh[(q - 21,)KI. (41) 

Thus for the Union Jack triplet model the equivalent vertex model is the 8-vertex 
model (L ,  =the  square lattice), and the special case of the vertex weights is 

w ( 0 )  = w(4) = 2 cosh 4 K  (42) 

and the remaining six degree 2 vertices have weights w(2) = 2 .  On the triangular triplet 
model (Sacco and Wu 1975) 

(43) w ( 0 )  = w ( 6 )  = 2 cosh 6K 

while the remaining thirty degree 2 and 4 vertices have weights 

w(2) = w(4) = 2 cosh 2K. (44) 

For triplet models of the types shown in figure 2 with anisotropic triplet fields the 
corresponding vertex models on the L1 lattice are easily derived. Thus if a degree 
q-vertex of L1 has the q interaction parameters K1, K2, . . . , Kq on the 4 triangles 
ringing the vertex then the 2'/* vertex weights of this vertex of L1 are given by 

4 

V, = 2 cosh( 1=1 1 ( - l )bKz)  (a  = 1,2,  , . . , 2q/2) (45) 

where b = 1 if the 'triangle' K, contains an edge (actually a half edge, see (18)) of L1 
which is covered by a bond of the vertex configuration otherwise b = 2. 
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